## ANOVA: Analysis of Variance

Dale Easley
University of Dubuque



## Analysis of Variance (ANOVA)

- When things differ, can variation be attributed to one factor more than another?
- Example: Species richness due to diet, geographic location, climate, predators, human influences, invasive species, etc.
- Example: Runoff due to precipitation, soil type, plant life, urban infrastructure, slope, permeability, etc.
- What matters most?



## Book Examples: 7.1 and 7.5

|              |                           | Substrate (colu                    | mns)                            |                                    |
|--------------|---------------------------|------------------------------------|---------------------------------|------------------------------------|
|              | Brick rubble              | Colliery spoil                     | Subsoil                         | Application totals                 |
| Fertiliser   | Sample 1                  | Sample 2                           | Sample 3                        | Fertiliser total                   |
|              | 12                        | 11                                 | 16                              | $(n_{\rm Fert} = 15)$              |
|              | 13                        | 10                                 | 12                              | 14                                 |
|              | 10                        | 8                                  | 14                              | $\sum x_{\text{Fert}} = 180$       |
|              | 12                        | 10                                 | 15                              | $\sum x_{\text{Fen}}^2 = 2224$     |
|              | 11                        | 12                                 | 14                              |                                    |
| Applications | $\Sigma_r = 58$           | $\Sigma x_2 = 51$                  | Σr. = 71                        |                                    |
| (rows)       |                           | $\sum x_2^2 = 529$                 |                                 |                                    |
|              | $SS_1 = 5.2$              | $SS_2 = 8.8$                       | $SS_3 = 8.8$                    |                                    |
|              | $s_1^2 = 1.3$             | $s_2^2 = 2.2$                      | $s_3^2 = 2.2$                   |                                    |
| Control      | Sample 4                  | Sample 5                           | Sample 6                        | Control total                      |
|              | 12                        | 9                                  | 12                              | $(n_{Control} = 15)$               |
|              | 10                        | 6                                  | 14                              | 1000000                            |
|              | 11                        | 9                                  | 14                              | $\sum x_{\text{Conrel}} = 163$     |
|              | 12                        | 10                                 | 13                              | $\sum x_{\text{Control}}^2 = 1865$ |
|              | 8                         | 8                                  | 15                              |                                    |
|              | $\sum x_4 = 53$           | $\sum x_5 = 42$                    | $\sum x_6 = 68$                 |                                    |
|              | $\sum x_4^2 = 573$        | $\sum x_5^2 = 362$                 | $\sum x_6^2 = 930$              |                                    |
|              | $SS_4 = 11.2$             | $SS_5 = 9.2$                       | $SS_6 = 5.2$                    |                                    |
|              | $s_4^2 = 2.8$             | $s_5^2 = 2.3$                      | $s_6^2 = 1.3$                   |                                    |
| Substrate    | Brick rubble              | Colliery spoil                     |                                 | Grand total                        |
| totals       | total                     | total                              | total                           |                                    |
|              |                           | $(n_{\text{Colliery}} = 10)$       |                                 | $(n_{\rm T} = 30)$                 |
|              | $\sum x_{Brick} = 111$    | $\sum x_{\text{Colliery}} = 93$    | $\sum x_{\text{Subsoil}} = 139$ | $\Sigma x_{\rm T} = 343$           |
|              | $\sum x_{Brick}^2 = 1251$ | $\sum x_{\text{Celliery}}^2 = 891$ | $\Sigma r_{Subsoil}^2 = 1947$   | $\sum x_{\rm T}^2 = 4089$          |

## Two-way ANOVA

- Video
- Dataset: Free throws
- Change your data to the needed format
- Run a two-way ANOVA with replication.
- What does it mean?



Iris data: For the three species, what varies significantly?

